Понедельник, 23.04.2018, 10:41
Приветствую Вас Гость | Регистрация | Вход
Архив медицинских статей для всех
Главная » Стоматология » Влияние наноструктурированных многофункциональных биосовместимых нерезорбируемых покрытий интраоссальных имплантатов на процесс их интеграци

00:29

Влияние наноструктурированных многофункциональных биосовместимых нерезорбируемых покрытий интраоссальных имплантатов на процесс их интеграци

Актуальность темы

Одной из центральных проблем стоматологии и челюстно-лицевой хирургии в области разработки, апробации и клинического применения дентальных имплантатов и конструкций для черепно-челюстно-лицевого остеосинтеза на сегодняшний день, как и прежде, является их совершенствование путём повышения их интеграционного потенциала и улучшения их прочностных характеристик (В.Л. Параскевич, 2002; Д.А. Хобкек и соавт., 2007; A. Jokstad, 2008; D. G. Olmedo et al., 2009). 

Согласно данным литературы, оптимальной формой интеграции имплантатов в костную ткань признаётся остеоинтеграция, форма процесса непосредственного контакта имплантата с костной тканью без участия соединительной ткани (В.Ю. Никольский, 2005; А.А. Кулаков и соавт., 2006; А.А. Черниченко и соавт., 2006; M. Haga et al., 2009). Особое значение в формировании интеграционного потенциала имплантатов придаётся физико- химическим характеристикам поверхности последних (С.Г. Ивашкевич, 2007; P. Schupbach, 2005). Для модификации поверхности имплантата (создания шероховатости, микрорельефа) в настоящее время применяются различные методы (пескоструйная обработка, травление кислотами, плазменное напыление титана и т.д.). 

Однако все эти работающие методы несущественно изменяют интеграционный потенциал имплантата (V.C. Colnot et al., 2007; A. Palmquist et al., 2009). Для улучшения остеоинтеграции имплантатов их поверхность часто покрывают слоем гидроксиапатита, однако низкие прочность, стойкость к ударным нагрузкам и резорбция покрытия ограничивают его применение для конструкций, работающих под нагрузкой в костной системе (В.Н. Лясников и соавт., 2000; В.Ф. Бочкарев и соавт., 2003). 

Одним из решений проблемы получения нового поколения имплантатов является нанесение на их поверхность биосовместимых нерезорбируемых покрытий. В настоящее время активно используются покрытия на основе карбидов и нитридов титана благодаря их высоким механическим и биоактивным свойствам (Д.В. Штанский и соавт., 2004; S. Piscanec et al., 2004; Y. Dong et al., 2007). Разрабатываются так же новые наноструктурированные многофункциональные биосовместимые нерезорбируемые покрытия (МБНП) на основе карбонитрида титана с добавлением в их состав Ca, P и O, что, как предполагается, позволит получить новый класс материалов, обладающих высоким комплексом механических характеристик, а так же значительным интеграционным потенциалом (Д.В. Штанский и соавт., 2005; Е.А. Левашов и соавт., 2008). 

Создание отечественных высококачественных наноструктурированных изделий нового поколения с высокими показателями интеграционной активности и при этом более дешевых, чем импортные, обеспечит населению России более доступную дентальную имплантологию и приведет к повышению качества оказываемых стоматологических услуг. Все вышеуказанное свидетельствует об актуальности и перспективности использования наноструктурированных МБНП поверхности внутрикостной части дентальных имплантатов. Исследований интеграционного потенциала этих покрытий в костную ткань проведено не было, что послужило основанием для выполнения настоящей работы.

Цель исследования: совершенствование имплантатов, применяемых в стоматологии и челюстно-лицевой хирургии, посредством использования наноструктурированных многофункциональных биосовместимых нерезорбируемых покрытий, повышающих интеграционный потенциал имплантатов. 

Задачи исследования


1. Оценить в опытах in vitro интенсивность процессов адгезии и распластывания клеток культуры эмбриональных фибробластов человека на поверхности образцов титановых пластин, а так же нитей и пластин из политетрафторэтилена (ПТФЭ) с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями. 

2. Исследовать в опытах на крысах влияние наноструктурированных многофункциональных биосовместимых нерезорбируемых покрытий на процесс интеграции фрагментов титановой проволоки имплантированных в бедренную кость. 

3. Оценить и сопоставить в опытах на собаках с экспериментально воспроизведенной частичной адентией выраженность интеграции интраоссальных имплантатов фирмы «Конмет» без покрытий и с наноструктурированным покрытием состава Ti-Ca-P-C-O-N в кость. 

4. Исследовать в опытах на крысах интеграционный потенциал образцов политетрафторэтиленовых нитей с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями при имплантации их в бедренную кость. 

5. В опытах на кроликах, изучить возможность применения пластин из политетрафторэтилена с покрытием Ti-Ca-P-C-O-N для устранения обширных дефектов плоских костей черепа, оценив при этом их интеграционный потенциал в сопоставлении с политетрафторэтиленовыми пластинами без покрытия.

Научная новизна

Впервые в экспериментах in vivo, в том числе на основании данных гистоморфологического исследования, установлено значимое повышение интеграционного потенциала, которое достигается в результате нанесения на внутрикостные имплантаты покрытия состава Ti-Ca-P-C-O-N, и выражается в 6 формировании в периимплантатной зоне новообразованных костных структур, что указывает на течение интеграционного процесса по типу остеоинтеграции. Впервые в опытах in vitro в соответствии с государственным стандартом Российской Федерации ГОСТ Р ИСО 10993.5-99 (Оценка биологического действия медицинских изделий. 
Часть 5. Исследование на цитотоксичность: методы in vitro) методом прямого контакта с культурой эмбриональных фибробластов человека установлен высокий уровень биологической совместимости имплантационных материалов с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями. 

Разработан новый гибридный имплантационный материал на основе политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями, который предлагается для устранения дефектов плоских костей [Патент на изобретение №2325191 от 16.02.2007]. Разработана новая экспериментальная модель внутрикостного имплантата, состоящая из политетрафторэтилена с металлическим нанопокрытием, которая позволяет изучать тонкие морфофункциональные характеристики тканевых структур периимплантатной зоны и молекулярные механизмы интеграции имплантационных материалов в кость при помощи гистологических, иммуногистохимических и электронно-микроскопических методов. 

Практическая значимость 

Разработаны и предлагаются для применения в практической стоматологии и челюстно-лицевой хирургии отечественные высококачественные наноструктурированные многофункциональные биосовместимые нерезорбируемые покрытия дентальных имплантатов, а также конструкций для черепно-челюстно-лицевого остеосинтеза с высокими показателями интеграционной активности и при этом более дешевых, чем импортные. 

Разработаны и обоснованы для применения в клинике имплантаты нового класса на основе политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями для устранения дефектов плоских костей. 

Научные положения, выносимые на защиту


1. Результаты экспериментально-морфологического исследования области контакта образцов титановых имплантатов с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями и тканевых, в том числе костных, структур периимплантатной зоны, свидетельствуют о высоком интеграционном потенциале исследуемых покрытий, что находит своё отражение в превалировании остеогенеза над образованием соединительной ткани в области контакта имплантат – тканевый субстрат. 

2. Исследование адгезии и распластывания эмбриональных фибробластов человека на поверхностях образцов из титана и политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями выявили повышение интенсивности клеточной кинетики на образцах с данными покрытиями. 

3. Результаты исследования морфофункциональных характеристик тканевых структур периимплантатной зоны при имплантации образцов политетрафторэтилена с наноструктурированными многофункциональными биосовместимыми нерезорбируемыми покрытиями в кость, свидетельствуют об их высоком остеоинтеграционном потенциале.

Апробация работы Результаты диссертационной работы доложены и обсуждены на: всероссийском совещании «Биокерамика в медицине» (Москва, 2006); Симпозиуме «Актуальные вопросы тканевой и клеточной трансплантологии» (Москва, 2007); Британо-Российском совещании по стволовым клеткам «Стволовые клетки: законодательство, исследования и инновации» (Москва, 2007).

Предзащитное обсуждение материалов исследования проведено на совместном заседании сотрудников структурных подразделений ФГУ «ЦНИИС и ЧЛХ Росмедтехнологий»: отдела общей патологии; отделения клинической и экспериментальной имплантологии; отделения ортопедической стоматологии и имплантологии; отделения амбулаторной хирургической стоматологии. Публикации Основные результаты диссертационного исследования отражены в 9 научных работах, из них 4 статьи опубликованы в ведущих рецензируемых изданиях, включенных в перечень ВАК РФ; 1 патент на изобретение и 1 монография. Объем и структура диссертационной работы Диссертационная работа изложена на 145 страницах машинописного текста, состоит из введения, трех глав, обсуждения, выводов, практических рекомендаций и списка литературы. Работа иллюстрирована 104 рисунками. Список литературы содержит 153 источника, в том числе 46 отечественных и 107 иностранных авторов.

Содержание работы

Материал и методы исследования

Материал исследования. Объектом исследований в настоящей работе явились наноструктурированные МБНП в системах Ti-Ca-P-C-O-N и Ti-Ca-Mn-K-C-O-N, которые имеют уникальное сочетание физико-механических и коррозионных свойств, а именно: пониженный модуль упругости – 170-270 ГПа; высокую адгезионную прочность к подложке до 50 Н; высокую степень упругого восстановления до 75%; низкий коэффициент трения 0.12-0.22; низкую скорость износа – 10-6 - 10-7 мм3/Нм; низкую шероховатость Rrms=0.13-1.5 нм; высокую твердость – 30-40 ГПa; высокое сопротивление пластической

деформации 0.9 ГПа, определяемое соотношением H3/E2; высокие значения H/E как показателя долговечности и износостойкости покрытий; отрицательный заряд поверхности при pH=7. В качестве подложек для нанесения покрытий использовали следующие материалы:

1. Титан марок ВТ1-0 (ГОСТ 19807-91) в виде пластин размерами 20 мм Х 20 мм Х 5 мм и проволоки длиной 10 мм и Ø 0.5 мм.

2. Внутрикостные дентальные винтовые титановые имплантаты Ø 4.0 мм и длиной 10 мм (производитель ООО «Конмет», Москва).

3. ПТФЭ пластины марки МКТ10 (ГОСТ 10007-80Е), размерами 20 мм Х 20 мм Х 5 мм и с пористостью 36%, а так же ПТФЭ нить марки 5035 длиной 10 мм, Ø 0.5 мм с пористостью 2-3% (производитель НПО «Экофлон», СПб).

Методика получения наноструктурированных МБНП. Для получения наноструктурированных МБНП применяли композиционные мишени составов TiC0.5+10%CaO+2%KMnO4, и ТiC0.5+Ca10(PO4)6(OH)2 синтезированные по технологии силового СВС-компактирования на базе опытно-промышленного участка самораспространяющегося высокотемпературного синтеза Научно-учебного центра СВС МИСиС-ИСМАН. Для нанесения металлического (Ti) покрытия на ПТФЭ использовалась мишень из чистого титана. Осаждение покрытий на подложки осуществляли с применением комбинированной установки вакуумного напыления на базе имплантора высокоэнергетических ионов «Сокол-50/20» в течение 60 минут путем магнетронного распыления композиционных мишеней в газовой смеси аргона с азотом, при парциальном давлении азота 14%. В процессе напыления давление в вакуумной камере и температура подложки составляли соответственно 0.2 Пa и 120-150оС. Толщина покрытия составляла 0.9-1.1 мкм.

Методы исследования in vitro с культурой эмбриональных фибробластов человека. Для решения вопроса о способности наноструктурированных МБНП влиять на интенсивность адгезии клеток, их распластывания и пролиферации на поверхности имплантатов использовали стандартную методику исследования на цитотоксичность (ГОСТ Р ИСО 10993.5-99), которая предусматривает проведение инкубации клеточной культуры кожно-мышечных фибробластов эмбрионов человека непосредственно в контакте с испытуемыми образцами. Оценку морфологии и жизнеспособности клеток проводили на инвертированном микроскопе Axiovert 200 (Carl Zeiss, Германия) с использованием метода окрашивания клеток 0.0002% раствором акридинового оранжевого в фосфатном буфере.

Для исследования методом сканирующей электронной микроскопии (СЭМ) была проведена процедура фиксации клеток на поверхности материалов. По истечении 72 часов с момента посева клеток образцы промывали 0.1 М фосфатно-солевым буфером (ФСБ), рН 7.4, после чего фиксировали в течение 2 часов 2.5% раствором глутарового альдегида в ФСБ. После удаления фиксирующего раствора образцы промывали ФСБ и проводили дегидратацию материала, после удаления этанола образцы помещали на 30 минут в гексаметилдисилазан, после чего высушивали на воздухе. Окончательное высушивание образцов осуществляли методом перехода через критическую точку на аппарате Hitachi CPD-1 (Critical Point Dryer). После чего их фиксировали на предметные столики и напыляли смесью золото-палладий, используя установку Eiko-IB3 (Ion coater) при следующем режиме: ионный ток – 6 мА, межэлектродное напряжение – 1.5 kV, что позволяло получать толщину слоя напыления около 25 нм. Изучение объектов проводили на аппарате CamScan S-2 (Cambridge Scanning) в режиме регистрации вторичных электронов при ускоряющем напряжении 20 kV. Захват и обработку видеоизображения на персональном компьютере реализовывали с использованием программно-аппаратного комплекса Microcapture 2.2 (системы для микроскопии и анализа).

Поскольку данное исследование раскрывает лишь «локальный» адгезионный потенциал испытуемых образцов, в работе были проведены экспериментальные исследования in vivo. Эти исследования проводились по двум разделам: 

1. Эксперименты по изучению интеграционного потенциала титановых имплантатов с наноструктурированными МБНП и без таковых
a. на модели имплантации образцов титановой проволоки в бедренную кость крыс;
b. на модели экспериментально воспроизведенной частичной адентии у собак с имплантацией титановых дентальных имплантатов.

2. Эксперименты по изучению интеграционного потенциала образцов ПТФЭ с наноструктурированными МБНП и без таковых
a. на модели имплантации образцов ПТФЭ нити в бедренную кость крыс;
b. на модели краниопластики высокопористыми ПТФЭ пластинами.

Методы исследования интеграции образцов титановой проволоки с покрытиями в бедренную кость крыс. Эксперимент выполнен на 48 половозрелых крысах-самцах линии «Вистар», весом 200-250 г, по 4 животных на точку наблюдения. Животные были распределены на 3 группы: Группа 1. Титановая проволока с покрытием Ti-Ca-Mn-K-C-O-N Группа 2. Титановая проволока с покрытием Ti-Ca-P-C-O-N Группа 3. Титановая проволока без покрытия (контроль) Методика экспериментальной операции. В условиях стерильной операционной после обработки операционного поля, под калипсоловым наркозом без предварительной примедикации (калипсол вводился внутрибрюшинно, при необходимости поддержания анестезии калипсол вводился внутримышечно; средняя доза калипсола 16,9±1,1мг/100г веса); произведен разрез кожи и подкожно-жировой клетчатки по передней поверхности левого бедра длинной 15 мм. 

Края раны мобилизованы, продольно рассечен мышечный слой и надкостница, отпрепарирована передняя поверхность бедренной кости в области диафиза. С помощью бормашины бором №1 произведен продольный пропил кортикальной пластины и губчатого вещества кости длинной 10 мм, шириной 0.5 мм, глубиной 0.5 мм. В полученный дефект костной ткани установлен стерильный имплантат, длинной 10 мм, Ø 0.5 мм. Имплантат фиксирован к бедренной кости двумя лигатурами кетгут 4/0. Рана послойно ушита узловыми швами, полностью укрывая имплантатов с наноструктурированными МБНП и без таковых
a. на модели имплантации образцов титановой проволоки в бедренную кость крыс;
b. на модели экспериментально воспроизведенной частичной адентии у собак с имплантацией титановых дентальных имплантатов.

Этап II. Установку имплантатов производили через 3 месяца после удаления зубов. В условиях стерильной операционной после обработки операционного поля, под внутримышечным наркозом (Тиопентал натрий 2,5% - 4ml) без предварительной примедикации произвели разрез слизистой по гребню альвеолярного отростка нижней челюсти слева в области ранее удаленных зубов. Отслоили слизисто-надкостничный лоскут с вестибулярной и язычной сторон на 5 мм. Специальными титановыми фрезами сформировали 4 ложа под имплантаты системы «Конмет». Произвели антисептическую обработку операционного поля 0.05% раствором хлоргексидина. Установили 4 имплантата системы «Конмет» Ø 4.0 мм и длиной 10 мм без покрытия (слева) и с покрытием Ti-Ca-P-C-O-N (справа). 

Установили заглушки на имплантаты. Слизисто-надкостничный лоскут уложили на место, рану ушили полигликолидом 4/0. Назначили превентивную антибиотикотерапию: Медоцеф 0.5, 1 раз в день, внутримышечно, курсом 5 суток. Динамическое наблюдение. Швы сняты на 8-е сутки. После операции животных содержали преимущественно на мягкой пище, мясо давали исключительно бескостное. Послеоперационный период протекал без осложнений. Собак выводили из экспериментов через 4 месяца после II этапа экспериментальной операции (установки имплантатов) передозировкой Тиопентала натрия. Выделяли нижние челюсти, производили их скелетирование и рентгенологическое исследование. Далее тканевый материал фиксировали в течение 4 суток в 10% нейтральном формалине с ежесуточной сменой растворов. Производили СЭМ исследование зоны контакта имплантат – кость.
Методы исследования интеграции образцов ПТФЭ нити с покрытиями в бедренную кость крыс. Эксперимент выполнен на 48 половозрелых крысах-самцах линии «Вистар», весом 200-250 г, по 4 животных на точку наблюдения. 

Животные были распределены на 4 группы: 
Группа 1. Нить из ПТФЭ с покрытием Ti-Ca-P-C-O-N 
Группа 2. Нить из ПТФЭ с покрытием Ti-Ca-Mn-K-C-O-N 
Группа 3. Нить из ПТФЭ с покрытием Ti (контроль) 
Группа 4. Нить из ПТФЭ без покрытия (контроль) 

Методика экспериментальной операции. См. выше. Животных выводили из опытов в сроки 15, 30 и 60 суток после оперативного вмешательства. Проводили гистоморфологическое исследование. Методы исследования интеграции образцов ПТФЭ пластин с МБНП в теменную кость кроликов. Эксперимент выполнен на 6 кроликах-самцах породы Шиншилла, массой ~2500 г. Животные были распределены на 2 группы: Группа 1. Пластины из ПТФЭ с покрытием Тi-Ca-P-C-O-N. Группа 2. Пластины из ПТФЭ без покрытия. Методика экспериментальной операции. В условиях стерильной операционной после обработки операционного поля, под внутримышечным наркозом (Тиопентал натрий 2,5% - 1.5ml) без предварительной примедикации через разрез кожного покрова с помощью фрезы №1 выпиливали и удаляли фрагмент теменной кости (наружную и внутреннюю кортикальные пластины) размерами 10 мм Х 10 мм. 

После гемостаза на костных краях дефектов 2-мя титановыми микровинтами сечением 2.0 мм и длиной 2.0 мм фиксировали пластины из высокопористого ПТФЭ с покрытием состава Ti-Ca-P-C-O-N (основная группа) и ПТФЭ пластины без покрытия (контроль). Животных выводили из эксперимента передозировкой Тиопентала натрия в сроки 3 и 6 месяцев по 2 животного на срок в подопытной группе и по 1 – в группе контроля. Тканевый материал из области экспериментального воздействия: область дефекта с имплантатами и прилежащей костной тканью в пределах 5 мм (всего тканевый блок составлял порядка 20 мм) подвергали гистоморфологическому исследованию.

Результаты собственных исследований и их обсуждение

Результаты проведенных в настоящей работе исследований in vitro, при сопоставлении различных наноструктурированных МБНП (Ti-Ca-Mn-K-C-O-N и Ti-Ca-P-C-O-N), нанесенных на титановые пластины, а так же титановых пластин без покрытия, по эффектам адгезии и распластывания эмбриональных фибробластов человека на поверхности испытанных образцов свидетельствовали о том, что наноструктурированные МБНП значимо усиливают эти эффекты. Такие же результаты были продемонстрированы в наших исследованиях in vitro в отношении ПТФЭ пластин с покрытиями. 

Особенностью этих экспериментов явилось, в отличие от предыдущего опыта, наличие группы полимерных образцов с покрытием Ti. У всех образцов ПТФЭ пластин с покрытиями обнаруживался выраженный эффект адгезии и распластывания культуральных клеток, в то время как у образцов без покрытия он не наблюдался. В процессе СЭМ исследования с высоким постоянством отмечалось наличие в участках заселения поверхности образцов ПТФЭ с МБНП культуральными клетками «наплывов» гомогенного вещества, которое, по нашему мнению является экстрацеллюлярным матриксом. При этом последний не определялся на электронограммах титановых пластин даже в участках плотного адгезирования культуральных клеток. Вне тела клеток можно было видеть лишь многочисленные псевдоподии и отростки, но никак не «наплывы» биоматрикса. Возможно, столь обильное образование экстрацеллюлярного матрикса связано с повышенной функциональной активностью клеток, оказавшихся в оптимальных для их жизнедеятельности условиях, чему могла определённо способствовать чрезвычайно развитая поверхность высокопористого ПТФЭ с наноструктурированным покрытием.

По первому разделу экспериментов in vivo в опытах на крысах были использованы 2 метода морфологического изучения области контакта имплантат – кость: метод СЭМ и гистоморфологический метод. Это обусловлено необходимостью верифицировать данные, полученные с помощью гистоморфологического метода, применение, которого, как известно, сопряжено с необходимостью извлечения металлического имплантата из костного блока до получения срезов. Естественно, применение этой методики таит в себе угрозу разрушения области контакта имплантат – кость, угрозу возникновения артефактов, и как следствие, ошибочных интерпретаций. Для повышения достоверности результатов экспериментального исследования применяли дополнительно метод СЭМ, который позволяет исследовать недекальцинированные тканевые блоки, содержащие имплантаты.




Категория: Стоматология | Просмотров: 2596 | Добавил: Vopis | Теги: новости, стоматология | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
RSS

Форма входа

Партнеры

Категории раздела

Алкоголизм [17]
Статьи от врачей на тему алкоголизма
Аллергия [45]
Статьи от врачей о аллергие
Анатомия и физиология [71]
Статьи от докторов на одноименную тему
Биология и генетика [20]
Статьи от врачей о биологии и генетике
Биохимия и человек [22]
Статьи от авторов
Гастроэнтерология [39]
Статьи от врачей
Гинекология [63]
Диетология [35]
Зрение [47]
Иммунология [23]
Кардиология [43]
Наркомания [16]
Все о "этом"...
Хирургия [36]
Разное [0]
Фитнес и спорт [28]
Физиотерапия [22]
Физиология [10]
Урология [30]
Туберкулез [4]
Стоматология [45]
Сексология [31]
Рефлексотерапия [8]
Ревматология [33]
Психология [84]
Проктология [5]
Педиатрия [89]
Онкология [11]
Неврология [35]
Массаж [18]
Лфк [10]
Лор [35]
Лекарства [34]
Криотерапия [8]
Косметология [0]
Контрацепция [40]
Кожвенерология [0]

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0


Яндекс.Метрика

Поиск

Наш опрос

Нужно пополнять сайт свежими материалами?
Всего ответов: 265